Interactions of CaMKII with dopamine D2 receptors: roles in levodopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson's rats

نویسندگان

  • SuFang Zhang
  • ChengLong Xie
  • Qiang Wang
  • ZhenGuo Liu
چکیده

Ca(2+)/calmodulin-dependent protein kinase II is a synapse-enriched kinase in mammalian brains. This kinase interacts with various synaptic proteins to regulate expression and function of interacting proteins and thereby modulates synaptic transmission. CaMKII and its interacting partners are also believed to play a pivotal role in the pathogenesis of various neurological and neurodegenerative disorders, such as Parkinson's disease (PD). In this study, we found that CaMKIIα binds to dopamine D2 receptors (D2R) in vitro. A distal region in the D2R third intracellular loop harbors CaMKIIα binding. Endogenous CaMKIIα was also found to interact with native D2Rs in rat striatal neurons in which D2Rs are expressed at a high level. In addition, in a rat 6-hydroxydopamine lesioned model of PD, chronic levodopa administration induced characteristic dyskinesia. In parallel, levodopa induced an increase in CaMKIIα-D2R interactions in striatal neurons. Intrastriatal injection of a Tat-fusion and CaMKIIα-D2R interaction-dead peptide (Tat-D2Ri) reversed this increase in the interaction between two proteins. Tat-D2Ri also alleviated dyskinetic behaviors induced by levodopa. These results reveal a new interaction between CaMKIIα and D2Rs in striatal neurons which is sensitive to long-term administration of levodopa in PD rats. Prevention of the response of CaMKIIα-D2R interactions to levodopa can alleviate levodopa-induced dyskinesia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMDA receptor regulation of levodopa-induced behavior and changes in striatal G protein-coupled receptor kinase 6 and â-arrestin-1 expression in parkinsonian rats

BACKGROUND Parkinson's disease is a neurodegenerative disorder caused by loss of dopaminergic neurons in the substantia nigra. The dopamine precursor, levodopa, remains the most effective and common treatment for this disorder. However, long-term administration of levodopa is known to induce characteristic dyskinesia, and molecular mechanisms underlying dyskinesia are poorly understood. METHO...

متن کامل

Targeting the D1-N-methyl-d-aspartate receptor complex reduces l-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson’s rats

L-3,4-dihydroxyphenylalanine (L-dopa) remains the most effective therapy for Parkinson's disease (PD), but its long-term administration is associated with the development of debilitating motor complications known as L-dopa-induced dyskinesia (LID). Enhanced function of dopamine D1 receptor (D1R) and N-methyl-D-aspartate receptor (NMDAR) is believed to participate in the pathogenesis of LID. Giv...

متن کامل

Changes in dopamine D2 receptors and 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine uptake in the brain of 6-hydroxydopamine-lesioned rats.

We studied tracer distributions in positron emission tomography of ligands for dopamine D1 receptors ([11C]SCH23390) and D2 receptors ([11C]raclopride) and the dopamine precursor analog 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), as a measurement of presynaptic dopaminergic function, in the brain after 6-hydroxydopamine lesioning of the medial forebrain bundle in rats. The unilater...

متن کامل

Roles of Ca2+/calmodulin-dependent protein kinase II in subcellular expression of striatal N-Methyl-D-aspartate receptors in l-3, 4-dihydroxyphenylalanine-induced dyskinetic rats

BACKGROUND The role of N-Methyl-D-aspartate (NMDA) receptors is critical to the development of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson's disease (PD). Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is thought to regulate the expression and activation of NMDA receptors in LID, but the interaction between LID and CaMKII-modulated NMDA receptor activity ...

متن کامل

Repetitive transcranial magnetic stimulation (rTMS) improves behavioral and biochemical deficits in levodopa-induced dyskinetic rats model

Fluctuations of dopamine levels and upregulations of NR2B tyrosine phosphorylation in the striatum have been connected with levodopa (L-dopa)-induced dyskinesia (LID) in Parkinson's disease (PD). Repetitive transcranial magnetic stimulation (rTMS) is one of the noninvasive and potential method treating dyskinesia. Yet, the effect of rTMS on the above key pathological events remains unclear. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014